

USN												BCHEM102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Applied Chemistry for ME Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C					
Q.1	a.	Define GCV. Explain the determination of calorific value of a fuel using	07	L1	CO1					
		Bomb calorimeter.								
	b.	Explain the construction, working and applications of Photovoltaic cells.	07	L1	CO1					
	c.	Explain the construction, working and applications of Lithium-ion battery.	06	L2	CO1					
		OR								
Q.2	a.	A coal sample with 93% C, 5% H ₂ and 2% ash is subjected to combustion	07	L2	CO1					
		in a Bomb calorimeter. Calculate the gross and net calorific values, given								
		that mass of coal sample taken is 0.95g, mass of water in the calorimeter is								
		2000g, water equivalent of calorimeter is 700g, rise in temperature of water								
		is 2.8°C, latent heat of steam is 2457 J/g and specific heat of water is								
		4.2 J/g/°C.								
	b.	What are fuel cells? Explain the construction, working and applications of	07	L2	CO1					
		methanol-oxygen fuel cell.								
	c.	Justify biodiesel is a great fuel. Explain the synthesis of biodiesel by	06	L2	CO1					
		transesterification method.								
	1	Module – 2	1		T					
Q.3	a.	Define metallic corrosion. Explain electrochemical theory of corrosion	07	L2	CO2					
		taking ion as an example.								
	b.	Describe electroplating of hard and decorative chromium.	07	L2	CO2					
	c.	What is cathodic protection? Explain the principle, process and applications	06	L2	CO2					
		of sacrificial anode method.								
OR										
Q.4	a.	What is CPR? A steel sheet of area 100 inch ² is exposed to air near the	07	L2	CO ₂					
		ocean. After 1 year period it was found to experience a weight loss of 485g								
		due to corrosion. If the density of steel is 7.9 g/cm ³ , calculate the CPR in								
	-	mpy and mmpy.	0.7	Τ.Δ	CO2					
	b.	What is stress corrosion? Explain the process of stress corrosion taking	07	L2	CO ₂					
	<u> </u>	caustic embrittlement as an example.	06	1.3	CO2					
	c.	Explain the process of Galvanization and its applications. Module – 3	06	L2	CO2					
0.5			07	1.2	CO3					
Q.5	a.	In a polymer sample, 20% of molecules have molecular mass 15000 g/mol, 35% molecules have molecular mass 25000 g/mol, remaining molecules	07	L2	COS					
		have molecular mass 20000 g/mol, remaining molecules have molecular mass 20000 g/mol, calculate the number average, weight								
		average molecular mass of the polymer.								
	b.	Explain the synthesis, properties and applications of chlorinated poly vinyl	07	L2	CO3					
	υ.	chloride	0,							
	c.	Explain the synthesis of Teflon. Mention its applications.	06	L2	CO3					
	٠.	Explain the symmetry of renoil mention its approaches.	UU							

BCHEM102/202

		OR			
Q.6	a.	Explain the synthesis, properties and applications of Kevlar fiber.	07	L2	CO3
	b.	Explain the properties and industrial applications of lubricants.	07	L2	CO3
	c.	Explain the properties and industrial applications of metal matrix polymer	06	L2	CO3
		composites.			
		Module – 4			
Q. 7	a.	Define Phase, Components and degree of freedom with example.	07	L2	CO4
	b.	Explain the principle, instrumentation and applications of potentiometric	07	L2	CO4
		titration.			
	c.	Describe the estimation of total hardness of water by using EDTA method.	06	L2	CO4
		OR	ı		
Q.8	a.	With the help of phase diagram, describe Lead-Silver system.	07	L2	CO4
	b.	Explain the application of colorimetric sensors in the estimation of copper.	06	L2	CO4
	c.	Explain the principle, instrumentation and applications of glass electrode in	07	L2	CO4
		the determination of pH of beverages.			
	1	Module – 5			
Q.9	a.	Define an Alloy. Explain the composition, properties and applications of	07	L1	CO5
		stainless steel.			~ ~ =
	b.	Explain size dependent properties of nanomaterials with respect to	07	L2	CO5
		i) Catalytic property ii) Thermal property.	0.6		~~-
	c.	Explain the properties and applications of carbon nanotubes.	06	L3	CO5
		OR			
0.10	1	0.5	Τ.Δ	005	
Q.10	a.	Explain the composition, properties and applications of Alnico.	07	L2	CO5
	b.	Explain the chemical composition, properties and applications of	07	L2	CO5
		Explain the synthesis of nanomaterials by Sol-Gel method.	06	L2	CO3
	C.	Explain the synthesis of nanomaterials by Sol-Ger method.	UU	LZ	COS
		Explain the composition, properties and applications of Alnico. Explain the chemical composition, properties and applications of Perovskites. Explain the synthesis of nanomaterials by Sol-Gel method.			
		2 of 2			