

USN												BCHEE102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Chemistry for EEE Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain the band diagrams for conductors and insulators.	7	L2	CO1
	b.	Describe the production of electronic grade silicon from quartz by	7	L2	CO1
		Czochrolski method.			
	c.	Explain the preparation, properties and commercial applications of	6	L2	CO1
		graphene oxide.			
	1	OR	ı	1	
Q.2	a.	What are conducting polymers? Explain the mechanism of polyacetylene.	7	L2	CO1
	b.	What is electroless plating? Describe electroless plating of copper in the manufacture of double-sided PCB.	7	L2	CO1
	c.	In a polymer sample 20% of molecules have molecular mass 15000 g/mol.	6	L3	CO1
		45% molecules have molecular mass 25000 g/mol remaining molecules			
		have molecular mass 27,000 g/mol. Calculate number average and weight			
		average molecular weight of the polymer.			
		Module – 2			
Q.3	a.	What are batteries? Explain the classification of batteries with suitable	7	L2	CO2
		examples.			
	b.	What are photovoltaic cells? Describe the construction and working of a	7	L2	CO2
		photovoltaic cell.			
	c.	Explain the construction and working of li-polymer battery. Mention its	6	L2	CO2
		applications.			
		OR			
Q.4	a.	Explain the construction and working of vanadium redox flow battery.	7	L2	CO2
		Mention its applications.			
	b.	What are fuel cells? Explain the construction and working of methanol-	7	L2	CO2
		oxygen fuel cell. Mention its applications.			
	c.	Explain the construction and working of Na-ion battery.	6	L2	CO2
		Module – 3	ı	•	
Q.5	a.	What is metallic corrosion? Explain the electrochemical theory of	7	L2	CO3
	1	corrosion, taking iron as an example.			
	b.	What is corrosion penetration rate? Calculate the CRR in both MPY and	7	L3	CO ₃
		MMPY for a thick steel sheet of area 100 inch ² , which experience a weight			
		loss of 485 g after one year (density of steel 7.9 g/cm ³).			
	c.	Describe the extraction of copper and gold from E-waste.	6	L2	CO3
	1	OR	1	1	
Q.6	a.	Write notes on:	7	L2	CO ₃
		(i) Differential metal corrosion			
	1_	(ii) Differential aeration corrosion	_		~
	b.	Explain the sacrificial anode method for the corrosion control.	6	L2	CO3
	c.	What is e-waste? Describe the effects of e-waste on environment and	7	L2	CO3
	1	human health.			

BCHEE102/202

Q.7	a.	Module – 4 What are nanomaterials? Explain the any two size dependent properties of	7	L2	CO4
		nanomaterials.			
	b.	What are pervoskite materials? Mention the properties and applications of	7	L2	CO4
		perovskite materials in opto electronic devices.	_	<u> </u>	~-
	c.	Describe the synthesis of nanomaterials by co-precipitation method.	6	L2	CO ₄
Λ0		OR	7	1.2	CO4
Q.8	a. b.	Explain the synthesis of nanomaterials by sol-gel method. What are QLED's? Mention its properties and applications.	7 6	L2 L2	CO4
	c.	Write notes on: (i) Nanophotonics (ii) Nanosensors	7	L2	CO4
	ι.	Module – 5	,		COT
Q.9	a.	What are reference electrode? Explain the construction and working of	7	L2	CO5
		calomel electrode.			
	b.	Explain the principle, instrumentation and applications of potentiometric	7	L3	CO5
		sensor in the estimation of iron.	_		
	c.	The emf a cell $Ag/AgNO_{3(0.001m)}//AgNO_{3(Xm)}/Ag$ is 0.059 V at 25°C, find	6	L3	CO
		the value of 'X'.			
0.10	1	OR		Τ.Δ	CO
Q.10	a.	What are ion selective electrodes? Explain the construction and working principle of glass electrode.	7	L2	CO5
	b.	Explain the principle and instrumentation colorimetric sensor, mention its	7	L3	COS
	"	applications.	′	113	
	c.	Explain how the strength of a weak acid determined using a conductometric	6	L2	CO
		sensor.			