CBCS SCHEME

USN						BESCK104C/BESCKC104

First Semester B.E/B.Tech. Degree Examination, June/July 2024 Introduction to Electronics and Communication

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

					T
		Module – 1	M	L	C
1	a.	Explain the working of Bi-phase full wave rectifier circuit with a neat diagram and waveform.	7	L2	CO1
	b.	A zener diode has a breakdown voltage of 10V. It is supplied from a voltage source varying between $20-40V$ in series with a resistance of 820Ω . Using an ideal zener model obtain the minimum and maximum zener currents.	7	L2	CO1
	c.	Summarize the advantages of negative feedback in amplifier circuits. With relevant equations and diagram, explain the concept of negative feedback.	6	L2	CO1
		OR			
2	a.	Describe the need of capacitor filter. For a FWR, explain the operation of C-filter.	7	L2	CO1
	b.	Discuss the load and line regulation using zener diode with neat circuit diagram and appropriate expressions.	7	L2	CO1
	c.	Describe with relevant frequency response curve of RC coupled amplifier. Explain the reason for the fall of voltage gain at low and high frequencies.	6	L2	CO1
		Module – 2			
3	a.	What is Barkhousan criteria for sustained oscillations? How it is used in oscillator?	7	L1	CO2
	b.	Explain with the help of circuit diagram the operation of a crystal oscillator. Why these oscillators give highly stable oscillations. Mention applications of crystal oscillators.	7	L2	CO2
	c.	Sketch the circuit of each of the following and briefly explain them based on the use of operational amplifiers. i) Differentiator ii) Integrator.	6	L2	CO2
		OR			
4	a.	Explain the operation of single stage Astable oscillator with its circuit diagram.	7	L2	CO2
	b.	A sinusoidal signal with peak value 6mv and 2KHz frequency is applied to the i/p of an ideal op-amp integrator with $R_1 = 100 \text{K}\Omega$ and $C_f = 1 \mu f$. Find the o/p voltage.	7	L2	CO2
	c.	List the various ideal op-amp characteristics.	6	L1	CO2
		1 of 2			

BESCK104C/BESCKC104 Module – 3 Covert: **L2 CO3** i) (725.25)₈ to its decimal and binary equivalent ii) Determine the value of x if $(211)_x = (152)_8$ iii) Realize an OR logic gate using diodes. Illustrate how NAND gate can be used to realize the following gates: **L**.2 **CO3** b. ii) EX – OR. i) NOR Simplify and realize the following expressions using only NAND and NOR. **L2 CO3** c. i) $Y = (A + \overline{B})(B + C)(\overline{C} + B)$ ii) Y = AB + AC + BD + CD. Prove NAND and NOR is not associative. 6 L2**CO3** a. Enumerate the ruler of Boolean algebra and prove each of them with truth **CO3** b. L2 table. Explain full adder circuit with truth table. Realize the circuit for sum and carry L2 **CO3** c. using basic gates. Also write diagram showing FA using two HA. Module - 4 Outline on transducers, sensors and actuators with examples for each. 7 L1**CO4** 7 a. Explain the classification of embedded system based on generation. **CO4** b. L1Identify the difference between microprocessor and microcontroller. **CO4** L1 c. OR Explain instrumentation system with relevant diagram. 7 **L2 CO4** 8 Explain the working operation of LED with a suitable diagram. 7 **L2 CO4** b. Construct the block diagram for control system and explain it. **CO4** c. 6 **L2** Module – 5 Outline on different types of modulation and briefly describe each in detail. L1 **CO5** Explain the concept of radio wave propagation and briefly describe each in **CO5** b. **L1** Construct ASK, FSK and PSK waveform by considering the following binary L2 CO₅ c. data: (Refer Fig.Q9(c)). Fig.Q9(c) OR 10 Define frequency deviation and sketch the FM wave with illustration. L2 **CO5** a. $\overline{C05}$ Classify the advantages of analog over digital communication. 7 b. L1Model the architecture of a wireless communication transmitter and its **L2 CO5** c. modulators scheme QPSK with waveform and constellation diagram.

* * * * *