

USN												BCIVC103/203
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, June/July 2023 **Engineering Mechanics**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C		
Q.1	a.	Define Couple. Explain characteristics of Couple.	5	L2	CO1		
	b.	Determine the magnitude and direction of resultant for given concurrent	7	L3	CO1		
		force system as shown in Fig.Q1(b).					
		150N 750N 7200N					
		40 30					
		60					
		60 1 45					
		10017					
		50N					
	-	Fig.Q1(b) Explain classification of force system with neat diagram.	0	1.2	CO1		
	c.	OR	8	L2	CO1		
0.2		State and prove Varignon's theorem.	7	L2	CO1		
Q.2	a. b.	Find the magnitude, direction and position of the resultant with respect to	10	L3	CO1		
	D.	the point A for the force system shown in Fig.Q2(b).	10	L3	COI		
		29KN 1.3KN					
		A (30)					
		The limit					
		7KN CN60					
		D 2m CNOBKN					
		Fig.Q2(b)					
	c.	Explain principle of transmissibility of force.	3	L2	CO1		
	•	Module – 2			•		
Q.3	a.	State and prove Lamis theorem.	6	L2	CO1		
	b.	Explain the condition of equilibrium of coplanar concurrent and non	5	L2	CO1		
		concurrent force system.					
	c.	The system of connected flexible cable as shown in Fig.Q3(c) two vertical	9	L3	CO1		
		forces 200 N and 250 N at B and D. Determine the forces in various					
		segments of the cable.					
		V 70					
		30/					
		1 B					
		(A) (60°					
		200N					
		V250N					
	1	Fig.Q3(c)					

		OR		I _	
Q.4	a.	Explain different types of beam with neat sketch.	6	L2	CO1
	b.	A beam carries load as shown in Fig.Q4(b). Determine reaction at the	7	L3	CO1
		supports.			
		80KN 2KN/m 40KN			
		ZAN/W)			
		A V	1		
		A MMMM B			
		2m 1 1m			
		Code			
		Fig.Q4(b)			
		115.21(0)			
	c.	Determine the reaction at support for given beam shown in Fig.Q4(c).	7	L3	CO1
	٠.	20 km/m	′	LS	COI
		IOKN (1.5KN/m			
		A mmm			
		2m m 2m 1m 3m /B			
		Δ			
		Fig.Q4(b)			
		M III 2	İ		
0.5		Module – 3	_	т э	CO2
Q.5	a.	Explain different type of truss with sketch.	5	L2	CO2
	b.	Write short notes on method of sections.	4	L2	CO2
	c.	Find forces in all the members of the truss shown in Fig.Q5(c). Tabulate the	11	L3	CO ₂
		results and indicate the magnitude and nature of forces on the diagram of			
		truss.			
		A B			
		3m			
		a 1/ Parc at			
		3m D 3m			
		YAOKN YAOKN			
		VAOKN			
		Fig.Q5(c)			
			<u> </u>		
		OR			~
Q.6	a.	Explain:	8	L2	CO ₃
		(i) Angle of friction			
		(ii) Angle of Repose			
		(iii) Laws of friction			
		(iv) Co-efficient of friction.			
	b.	For the block shown in Fig.Q6(b), determine force P required to push the	6	L3	CO3
	~	block up the plane take $\mu = 0.25$ for all contact surface refer Fig.Q6(b).			
		0.20 101 011 001100 10101 1 19.00(0).	1		
		J EDON)	1		
			1		
		30°	ĺ		
			1		
		Fig.Q6(b)	1		

	c.	A ladder of 3m length and weighing 200 N is placed on wall at an	6	L3	CO ₃
		inclination of 60° which is as shown in Fig.Q6(c) and coefficient of friction			
		between ladder and wall is 0.28 and between ladder and floor is 0.34. A			
		man weighing 600 N is to reach the top of ladder. Calculate the horizontal			
		force P to be applied to the ladder at floor level to prevent ladder from			
		slipping.			
		B 1/600 M			
		200N			
		Fig.Q6(c)			
0.7		Module – 4 Locate centroid of triangle with base B and height h by the method of	8	L2	CO4
Q.7	a.	integration.	O	LL	CU4
	b.	Locate the centroid for the shaded part with respect to reference x and y	12	L3	CO4
	ν.	axis Fig.Q7(b).	14	113	- COT
		MAISTIG.Q7(0).			
		3m			
		X			
		Fig 07(b)			
		Fig.Q7(b) OR			
Q.8	a.	Explain perpendicular axis theorem.	5	L2	CO4
Q.0	b.	Locate moment of inertia of rectangle about its horizontal centroidal axis	7	L2	CO4
	0.	by method of integration.	,		co.
	c.	Calculate least radius of gyration for the section shown in Fig.Q8(c).	8	L3	CO4
		N 190			20.
		1 Dio			
		120 122 100			
		121 100			
		100			
		V 180> X			
		Fig.Q8(c) All dimensions are in mm			
		Module – 5			
Q.9	a.	Define: (i) Displacement (ii) Speed (iii) Velocity (iv) Acceleration	8	L2	CO5
٧٠/	b.	Derive all three basic equation of motion.	6	L2	CO5
	c.	A car starts from rest and accelerates uniformly to a speed of 75 kmph over	6	L3	CO5
		a distance of 1000 m. Find acceleration of car and time taken to attain this			
		speed.			
		OR			
Q.10	a.	Explain D'Alembert's principle of equilibrium.	6	L2	CO5
	b.	Explain: (i) Angle of projection (ii) Time of flight (iii) Vertical height	6	L2	CO5
	c.	A projectile is projected from a point at an angle of elevation of 30° with a	8	L3	CO5
Ī					
		velocity of 600 m/sec, find the velocity and direction of motion of particle			

