

**BPHYE102/202** 

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024

## **Applied Physics for EEE Stream**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.
- 4. Speed of light  $c = 3 \times 10^8$  m/s,  $K = 1.38 \times 10^{-23}$  J/K,  $h = 6.625 \times 10^{-34}$  JS, g = 9.8 m/s<sup>2</sup>,  $\epsilon_0 = 8.854 \times 10^{-12}$  F/m

|            |     | Module – 1                                                                                        | M        | L         | С               |
|------------|-----|---------------------------------------------------------------------------------------------------|----------|-----------|-----------------|
| Q.1        | a.  | State and explain Heisenberg's uncertainty principle and show that there is                       | 9        | L2        | CO1             |
| Q.1        | a.  | no existence of electrons in the nucleus of an atom.                                              | ,        | LL        | COI             |
|            | b.  | What is a wave function, probability density and normalization of wave                            | 7        | L2        | CO1             |
|            | υ.  | function?                                                                                         | <b>'</b> |           | COI             |
|            | c.  | Find the lowest energy of an electron confined to move in a one                                   | 4        | L3        | CO1             |
|            | · · | dimensional potential box of length 1A in electron volts.                                         | •        | LJ        | COI             |
|            |     | OR                                                                                                |          |           |                 |
| Q.2        | a.  | Setup time Independent Schrodinger's wave equation for a particle in one                          | 7        | L2        | CO1             |
| <b>~</b>   |     | dimension.                                                                                        | ′        |           | 001             |
|            | b.  | Discuss the wave functions, probability densities and energy for a particle                       | 9        | L2        | CO1             |
|            |     | in a box by considering the ground state and first two excited states.                            |          |           |                 |
|            | c.  | Calculate the de-Broglie wavelength of an electron when it is accelerated to                      | 4        | L3        | CO1             |
|            |     | a potential of 5000 V.                                                                            |          |           |                 |
|            |     | Module – 2                                                                                        |          |           |                 |
| Q.3        | a.  | Mention any three assumptions of quantum free electron theory. Discuss                            | 9        | L2        | CO <sub>1</sub> |
|            |     | the variation of Fermi factor with temperature and energy.                                        |          |           |                 |
|            | b.  | Explain the construction and working of MAGLEV vehicle.                                           | 6        | <b>L2</b> | CO <sub>1</sub> |
|            | c.  | An elemental solid dielectric material has polarizability of $7 \times 10^{40}$ Fm <sup>2</sup> . | 5        | L3        | CO <sub>1</sub> |
|            |     | Assuming the internal field to be Lorentz field, calculate the dielectric                         |          |           |                 |
|            |     | constant for the material if the material has $3 \times 10^{28}$ atoms/m <sup>3</sup> .           |          |           |                 |
|            |     | OR                                                                                                |          |           |                 |
| Q.4        | a.  | What is super conductivity? Describe Type-I and Type-II superconductors.                          | 7        | L2        | CO <sub>1</sub> |
|            | b.  | What is dielectric polarization? Explain various types of polarization                            | 8        | L2        | <b>CO1</b>      |
|            |     | mechanism.                                                                                        |          |           |                 |
|            | c.  | Calculate the probability of an electron occupying an energy level 0.02 eV                        | 5        | L3        | CO <sub>1</sub> |
|            |     | above the Fermi level at 200 K and 400 K in a material.                                           |          |           |                 |
|            | 1   | Module – 3                                                                                        |          |           | ~~~             |
| <b>Q.5</b> | a.  | Obtain an expression for energy density of radiation under thermal                                | 8        | L2        | CO <sub>2</sub> |
|            | ļ., | equilibrium conditions in terms of Einstein's coefficients.                                       |          | T 0       | COS             |
|            | b.  | What is attenuation? Explain different types of attenuation in optical fibers.                    | 8        | L2        | CO2             |
|            | c.  | The average output power of laser source emitting a laser beam of wave                            | 4        | L3        | CO <sub>2</sub> |
|            |     | length 6328 A is 5 mW. Find the number of photons emitted per second by                           |          |           |                 |
|            |     | the laser source.                                                                                 |          |           |                 |
|            |     | OR                                                                                                |          |           |                 |

## **BPHYE102/202**

| Q.6        | a.       | What is numerical aperture? Obtain an expression for numerical aperture                                       | 9 | L2       | CO2              |
|------------|----------|---------------------------------------------------------------------------------------------------------------|---|----------|------------------|
|            | <u> </u> | interms of refractive indices of core and cladding of an optical fiber.                                       | _ | <b>.</b> | ~ -              |
|            | b.       | Describe the working of a laser printer.                                                                      | 6 | L2       | CO2              |
|            | c.       | The attenuation of light in an optical fiber is estimated at 2.2 dB/km. What                                  | 5 | L3       | CO <sub>2</sub>  |
|            |          | fractional initial intensity remains after 2 km and after 6 km.                                               |   |          |                  |
|            | 1        | Module – 4                                                                                                    |   | I        |                  |
| Q.7        | a.       | State and prove Gauss Divergence theorem.                                                                     | 7 | L2       | CO3              |
|            | b.       | Explain Faraday's laws of electromagnetic induction and amperes law.                                          | 8 | L2       | CO <sub>3</sub>  |
|            |          | Express the same in point form.                                                                               |   |          | ~~-              |
|            | c.       | Determine the constant c such that the vector                                                                 | 5 | L3       | CO <sub>3</sub>  |
|            |          | $\vec{A} = (x + ay)\hat{a}_x + (y + bz)\hat{a}_y + (x + cz)\hat{a}_z$ is solenoidal.                          |   |          |                  |
|            |          | OR                                                                                                            |   |          |                  |
| Λ0         | Ι        | 4 4 4 4 4                                                                                                     | O | 13       | CO2              |
| <b>Q.8</b> | a.       | Derive wave equation in terms of electric field using Maxwell's equations                                     | 8 | L2       | CO <sub>3</sub>  |
|            | 1.       | for free space.                                                                                               | 0 | 1.2      | CO2              |
|            | b.       | Discuss continuity equation. Derive the expression for displacement                                           | 8 | L2       | CO <sub>3</sub>  |
|            |          | current.                                                                                                      | 4 | т э      | CO2              |
|            | c.       | Calculate the curl of $\vec{A}$ given by $\vec{A} = (1 + yz^2)\hat{a}_x + xy^2\hat{a}_y + x^2y\hat{a}_z$ .    | 4 | L3       | CO <sub>3</sub>  |
|            |          | Module – 5                                                                                                    |   | <u> </u> |                  |
| Q.9        | a        | Derive an expression for electrical conductivity in extrinsic and intrinsic                                   | 8 | L2       | CO4              |
| Ų.y        | a.       | semiconductors.                                                                                               | O | 1.2      | <del>- CO4</del> |
|            | h        |                                                                                                               | 8 | L2       | CO4              |
|            | b.       | Describe the construction and working of semiconductor laser with energy                                      | Ŏ | LL       | UU4              |
|            | _        | level diagram.  The Hell goofficient of a greenman of a depad ciliagram is found to be                        | 1 | 12       | CO4              |
|            | c.       | The Hall coefficient of a specimen of a doped silicon is found to be                                          | 4 | L3       | CO4              |
|            |          | $3.66 \times 10^{-4}$ m <sup>3</sup> /c. The resistivity of the specimen is $9.93 \times 10^{-3}$ ohm-m. Find |   |          |                  |
|            |          | the mobility and charge carrier density assuming single carrier conduction.                                   |   |          |                  |
| 0.10       | 1        | OR OR                                                                                                         | • | T 0      | 60.4             |
| Q.10       | a.       | Explain Fermi level in an intrinsic semiconductor and derive the relation                                     | 9 | L2       | CO4              |
|            |          | between Fermi energy and energy gap for an intrinsic semiconductor.                                           | _ | T 0      | GO.              |
|            | b.       | Explain construction and working of photo diode.                                                              | 7 | L2       | CO5              |
|            | c.       | The resistivity of intrinsic germanium at 27°C is 0.47 ohm-meter. If the                                      | 4 | L3       | CO <sub>4</sub>  |
|            |          | electron and hole mobilities are 0.38 m <sup>2</sup> /VS and 0.18 m <sup>2</sup> /VS respectively.            |   |          |                  |
|            |          | Calculate the intrinsic carrier density.                                                                      |   |          |                  |
|            |          | ****                                                                                                          |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          | 6                                                                                                             |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          | G <sup>y</sup>                                                                                                |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          | 2 of 2                                                                                                        |   |          |                  |
|            |          | 2 -52                                                                                                         |   |          |                  |
|            |          | 2 of 2                                                                                                        |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |
|            |          |                                                                                                               |   |          |                  |