CBCS SCHEME

USN					

BMATC101

First Semester B.E./B.Tech. Degree Examination, June/July 2023 Mathematics - I for Civil Engineering Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU formula handbook is permitted.

		Mødule – 1	M	L	С
Q.1	a.	Find the angle between radius vector and the tangent for the polar curve $r=ae^{\theta cot\alpha}$, where α is a constant.	6	L2	CO1
	b.	Find the angle of intersection between $r = a\theta$ and $r = \frac{a}{\theta}$.	7	L2	CO1
	c.	Show that the radius of curvature of the curve $y = 4 \sin x - \sin 2x$ at $x = \frac{\pi}{2} \text{ is } 5\sqrt{5}/4$.	7	L3	CO1
		OR .			
Q.2	a.	Prove that the curves $r = a(1 + Cos \theta)$ and $r = b(1 - Cos \theta)$ intersect orthogonally.	7	L2	CO1
	b.	Show that the pedal equation for $r^2 = a^2 \operatorname{Sec} 2\theta$ is $pr = a^2$.	8	L2	CO1
	c.	Using Modern mathematical tool with program / code to plot the curve $r=2 Cos2\theta $.	5	L3	CO5
		Module – 2	I		1
Q.3	a.	Obtain Maclaurin's series for the function log(1+x) upto 4 th degree terms.	6	L2	CO2
	b.	Prove that $\lim_{x\to 1} x^{\frac{1}{(1-x)}} = \frac{1}{e}$.	7	L3	CO2
	c.	Show that $f(x, y) = xy(a - x - y)$ $a > 0$ is maximum at the point $(\frac{a}{3}, \frac{a}{3})$.	7	L2	CO2
		OR			
Q.4	a.	Prove that Sin x + Cos x = 1 + x - $\frac{x^2}{2}$ - $\frac{x^3}{6}$ + $\frac{x^4}{24}$ + by using Maclaurin's series.	7	L2	CO2
	b.	If $u = f(x-y, y-z, z-x)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	8	L2	CO2
	c.	Using Modern mathematical tool, write a program to show that $U_{xx} + U_{yy} = 0$, given $U = e^x(x \text{ Cos } y - y \text{ Sin } y)$.	5	L3	CO5
		1 of 3			<u> </u>
		1 01 3			

		BMATC101			
		Module – 3			
Q.5	a.	Solve $(x^2 + y^2 + x)dx + xy dy = 0$.	6	L2	CO3
	b.	Find the Orthogonal trajectories of the family of curves	7	L2	CO3
		$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, where a is the parameter.			
	c.	Reduce the equation $y = 2px - y^2p^3$ to the Clairaut's form by substituting $X = 2x$, $Y = y^2$ and solve.	7	L3	CO3
		OR			
Q.6 a. Solve $(xy^2 - e^{\frac{1}{x^3}}) dx - x^2y dy = 0$.					CO3
	b.	Solve the Bernoulli differential equation $\frac{dy}{dx} - \frac{y}{(1+x)} = \frac{-y^2}{(1+x)}$.	7	L2	CO3
	c.	Use Newton's law of cooling to solve the following: A bottle of water at room temperature of 72°F is kept in a refrigerator where the temperature is 44°F. After half an hour water cooled to 61°F. i) What is the temperature of the water in another half an hour? ii) How long will it take to cool to 50°F?	7	L3	CO3
		Module – 4			
Q.7	a.	Solve $(D^2 - 2D + 1)y = x + 2$.	6	L2	CO3
	b.	Solve using method of variation of parameters $(D^2 + a^2)y = \tan ax$.	7	L2	CO3
	c.	Solve $x^2y'' - 2xy' - 4y = x^4$.	7	L2	CO3
		OR			
Q.8	a.	Solve $(D^4 + 2D^3 - 5D^2 - 6D)y = 0$.	6	L2	CO3
	b.	Solve $(D^2 + 16)y = e^{-4x}$.	7	L2	CO3
	c.	Solve $(2x + 1)^2 \frac{d^2y}{dx^2} - 2(2x + 1)\frac{dy}{dx} - 12y = 3(2x + 1)$.	7	L2	CO3
		Module – 5			T
Q.9	a.	Find the rank of the matrix (11 12 13 14) 12 13 14 15 13 14 15 16 14 15 16 17)	6	L1	CO4
	b.	Solve using Gaussian Elimination method: 3x + y + 2z = 3 2x - 3y - z = -3 x + 2y + z = 4.	7	L2	CO4
		2 of 3			

					BMATC101		
	c.	Use Rayleigh's power method to find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Take initial	7	L3	CO4		
		vector to be $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ perform 6 iteration.					
Q.10	a.	Test the following system for consistency and solve $x + 2y + 3z = 1$ $2x + 3y + 8z = 2$ $x + y + z = 3.$	7	L2	CO4		
	b.	Solve the following system by Gauss – Seidel method with trial solution $x = y = z = 0$. $10x + y + z = 12$ $x + 10y + z = 12$ $x + y + 10z = 12$.	6	L3	CO4		
	c.	Using modern mathematical tool, write a program/code to find the largest eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by Power method.	7	L3	CO5		
		Using modern mathematical tool, write a program/code to find the largest eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by Power method.					
		3 of 3					