Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN					

Second Semester B.E Degree Examination Mathematics-II for Computer Science Engineering-BMATS201

TIME: 03 Hours

Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	M	L	C
Q.01	a	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz$	7	L2	CO1
	b	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy \ dy \ dx$ by changing the order of integration.	7	L3	CO1
	С	Show that $\gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	6	L2	CO1
		OR		I	I
Q.02	a	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates	7	L3	CO1
	b	Find by double integration, the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.	7	L2	CO1
	С	Using Mathematical tools, write the code to find the area of an ellipse by double integration $A=4\int_0^a\int_0^{\frac{b}{a}\sqrt{a^2-x^2}}dydx$.	6	L3	CO5
		Module-2		I	ı
Q. 03	a	Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at $(1, -2, -1)$ in the direction of the vector $2\hat{\imath} - \hat{\jmath} - 2\hat{k}$.	7	L2	CO2
4	b	If $\vec{F} = \nabla(xy^3z^2)$, find $div \vec{F}$ and $curl \vec{F}$ at the point $(1, -1, 1)$	7	L2	CO2
	c	Prove that the spherical coordinate system is orthogonal.	6	L2	CO2
		OR			1
Q.04	а	Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at (2,1,2)	7	L3	CO2
	b	Show that the vector $\vec{F} = \frac{x\hat{\imath} + y\hat{\jmath}}{x^2 + y^2}$ is both solenoidal and irrotational.	7	L2	CO2
	С	Using Mathematical tools, write the code to find the curl of	6	L3	CO5

		$\vec{F} = xy^2\hat{\imath} + 2x^2yz\hat{\jmath} - 3yz^2\hat{k}$			
	1	Module-3			
Q. 05	a	Let $V = R^3$ be a vector space and consider the subset W of V consisting	7	L2	CO3
		of vectors of the form (a, a ² , b), where the second component is the			
		square of the first. Is W a subspace of V?			
	b	Find the basis and the dimension of the subspace spanned by the	7	L2	CO3
		vectors $\{(2, 4, 2), (1, -1, 0), (1, 2, 1), (0, 3, 1)\}$ in $V_3(R)$.			
	С	Find the kernel and range of the linear operator	6	L2	CO3
		$T(x, y, z) = (x + y, z) \text{ of } R^3 \rightarrow R^2$			11/5
		OR			
Q. 06	a	Let $f(x) = 2x^2 - 5$ and $g(x) = x + 1$. Show that the function	7	L2	CO3
		$h(x) = 4x^2 + 3x - 7$ lies in the subspace Span {f, g} of P ₂ .	17.		
	b	Prove that the transformation $T; R^2 \rightarrow R^2$ defined by	7	L2	CO3
		T(x,y) = (3x, x + y) is linear. Find the images of the vectors (1, 3)			
		and (-1, 2) under this transformation.			
	С	Show that the functions $f(x) = 3x - 2$ and $g(x) = x$ are orthogonal in P_n	6	L2	CO3
		with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.			
		Module-4	<u></u>		
Q. 07	a	Find an approximate value of the root of the equation $xe^x = 3$, using	7	L2	CO4
		the Regula-Falsi method, carry out three iterations.			
	b	Using Newton's divided difference formula, evaluate $f(8)$ from the	7	L2	CO4
		following			
		x 4 5 7 10 11 13			
		f(x) 48 100 294 900 1210 2028			
	С		6	L3	CO4
		Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using the Trapezoidal rule by taking 6 divisions.		Lo	
Q. 08	а	OR Find the real root of the equation $\cos x = xe^x$, which is nearer to	7	L2	C04
Ç		x = 0.5 by the Newton-Raphson method, correct to three decimal			
		places.			
	b	Given, $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$,	7	L2	CO4
j		0.7 0.7 1,0 m 00 0.7 0.00,0 m 00 = 0.01,2 j			

		$\sin 60^{0} = 0.8660$, find $\sin 48^{0}$ using Newton's forward interpolation			
		formula.			
	С	Evaluate $\int_0^3 \frac{1}{4x+5} dx$ by using Simpson's $1/3^{rd}$ rule by taking 7	6	L3	CO4
		ordinates.			
	I	Module-5			1
Q. 09	a	By Taylor's series method, find the value of y at $x = 0.1$ and $x = 0.2$ to	7	L2	CO4
		5 places of decimals from $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$.			
	b	Using the Runge-Kutta method of fourth order, find y(0.1) given that	7	L2	CO4
		$\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$, taking $h = 0.1$			E MASS
	С	Given that $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0$, $y(0.2) = 0.02$,	6	L2	CO4
		y(0.4) = 0.0795, $y(0.6) = 0.1762$ compute y at x = 0.8 by applying			
		Milne's method.			
	1	OR			1
Q. 10	a	Using the modified Euler's method, find y(0.1) given that $\frac{dy}{dx} = x^2 + y$	7	L2	CO4
		and $y(0) = 1$ take step $h = 0.05$ and perform two modifications in			
		each stage.			
	b	Using the Runge-Kutta method of fourth order, find $y(0.2)$ given that	7	L2	CO4
		$\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0.1) = 1.0912$, taking $h = 0.1$			
	С	Using Mathematical tools, write the code to find the solution of	6	L3	CO5
		$\frac{dy}{dx} = 1 + \frac{y}{x}$ at $y(2)$ taking h = 0.2. Given that $y(1) = 2$ by Runge-Kutta			
		4 th order method.			