

USN											BPHYM102/202
-----	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Applied Physics for ME Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	What are damped and forced oscillations? Obtain the differential equation	9	L2	CO1
Q.1	a.	of motion of a body undergoing forced oscillation and mention the expression for amplitude and phase of oscillation.		112	COI
	b.	Describe the construction and working of Reddy shock tube.	7	L1	CO1
	c.	In a Reddy shock tube, the time taken to travel between two sensors is $275 \mu s$. If the distance between two sensors is $140 mm$, calculate the Mach number. Assume the speed of sound as $340 m/s$.	4	L3	CO1
	1	OR	l	l	
Q.2	a.	Define stiffness factor. Derive the expression for equivalent force constant for two springs connected in series and parallel combination.	9	L2	CO1
	b.	Define Mach number and Mach angle. Mention four characteristics of shock wave.	6	L2	CO1
	c.	Three springs are connected in series and 500gm object attached at one end of a spring. If spring constant $K_1 = K_2 = K_3 = 50$ N/m, then calculate the change in length of the three springs. Assume accelerating due to gravity as $g = 10$ m/s ² .	5	L3	CO5
		Module – 2			
Q.3	a.	State and explain Hook's law. With neat diagram, explain the stress-strain curve for elastic materials.	8	L2	CO1
	b.	Explain differential elastic moduli and mention the relation between them.	7	L2	CO1
	c.	A rod of cross section area $15\text{mm} \times 15\text{mm}$ and 1m long is subject to compressive load of 22.5kN. Calculate the stress and decrease in length if Young's modulus is $200 \times 10^9 \text{ N/m}^2$.	5	L3	CO1
	7	OR			
Q.4 (a,	What is Poisson's ratio? Derive the relation between bulk modulus (K). Young's modulus (Y) and Poisson's ratio (σ). What are the limiting values of Poisson's ratio?	9	L2	CO1
	b.	What is Bending moment? Discuss different types of beams and mention their engineering application.	7	L2	CO1
	c.	Calculate the Poisson, ratio for the material. Given that Y =12.25×10 ¹⁰ N/m ² and $\eta = 4.55 \times 10^{10}$ N/m ² .	4	L3	CO1
	1	Module – 3	Г	ı	
Q.5	a.	Discuss Seebeck effect and Peltier effect with their coefficients.	8	L2	CO2
	b.	Describe the construction and working of Thermo Electric Generators (TEG)	7	L2	CO2

				T = -	
	c.	The thermo emf (in eV) of a thermocouple, one junction of which is at 0° C is given by $e = 1600T - 4T^2$, where T is temperature of hot junction. Find the neutral temperature and Peltier coefficient.	5	L3	CO2
		OR			
Q.6	a.	Derive the expression for thermo emf in terms of T_1 and T_2 .	8	L2	CO2
	b.	Explain the construction and working of thermopile. Mention four advantages.	7	L2	CO2
	c.	The thermo emf of a Cu-Fe thermocouple is $2160\mu V$, where the cold junction is at 0°C and hot junction at 250°C. Calculate the constants a and b if the neutral temperature is 330°C.	5	L3	CO2
		Module – 4			
Q.7	a.	What is Joule-Thomson's effect? Derive the expression $\Delta T = \frac{P_1 - P_2}{C_p} \left[\frac{2a}{RT} - b \right] $ using the theory of Joule theorem effect.	8	L2	CO3
	b.	Explain briefly the application of cryogenics in aerospace and tribology.	8	L2	CO3
	c.	In Joule – Thomson's experiment, temperature changes from 100°C to 150°C for pressure change of 20MPa to 170 MPa. Calculate the Joule – Thomson coefficient.	4	L3	CO3
		OR			
Q.8		Explain the construction and working of Porous plug experiment with neat	8	L2	CO3
Ų.8	a.	diagram.	O		CO3
	b.	Explain the liquefaction of Helium.	8	L2	CO3
	c.	Calculate the inversion temperature of gas. Given $a = 0.244$ atom L^2/mol^2 , $b = 0.027$ L/mol, and $R = 0.0821$ L atom/K/mol.	4	L3	CO3
		Module – 5			
Q.9	a.	Explain the construction and working of X-ray diffraction meter (XRD).	7	L2	CO4
	b.	With a neat sketch, explain the principle construction and working of Transmission Electron Microscope (TEM).	9	L2	CO4
	c.	Determine the wavelength of X-rays for crystal size of 1.188×10^{-6} m. Peak width 0.5° and peak position 30° for a cubic crystal. (Given: Scherrer constant K = 0.92).	4	L3	CO4
		OR			
Q.10	a.	Describe the construction and working of X-ray photoelectron spectroscopy (XPS)	8	L2	CO4
	b.	Describe the construction and working of Atomic Force Microscopy (AFM).	8	L2	CO4
	c.	Calculate the longest wavelength that can be analyzed by using a rock salt crystal of spacing, d = 0.282nm in the second order.	4	L3	CO4
	<u> </u>				

* * * * *